寂寞书屋

第二百五十七章 见证奇迹吧!(上)

+A -A

    比如苹果下落、作者被读者吊起来抖,它们跟波的本质区别又在哪呢?

    “也就是说,只要有一个函数满足f(x,t)=f(x-vt,0),满足任意时刻的形状都等于初始形状平移一段,那么它就表示一个波。”

    这一对(x,y)就组成了坐标系里的一个点,把所有这种点连起来就得到了一条曲线——这是货真价实的初一概念。

    波在传播的时候,虽然不同时刻波所在的位置不一样,但是它们的形状始终是一样的。

    小牛第一定律告诉我们“一个物体在不受力或者受到的合外力为0的时候会保持静止或者匀速直线运动状态”,那么如果合外力不为0呢?

    然而这个附近的点也没动,所以它也必然会受到更里面点的张力。

    这是一个很强的限制条件。

    没错。

    f(x,t)=f(x-vt,0)。

    “比如......张力。”

    如果我们知道一个物体的质量m,只要你能分析出它受到的合外力F。

    接着徐云又在纸上写下了一个公式:

    不过令徐云微微放松的是。

    众所周知。

    但是这样还不够。

    这样这个点一边被拉,另一边被它邻近的点拉,两个力的效果抵消了。

    在场的这些大老中,大部分都出自专业科班,只有法拉第是个学徒出身的‘九漏鱼’。

    但是当一个波传到这里的时候,绳子会变成一个波的形状,这时候就存在张力了。

    每个点把自己隔壁的点“拉”一下,隔壁的点就动了——就跟我们列队报数的时候只通知你旁边的那个人一样,这种绳子内部之间的力就叫张力。

    于是徐云继续开始了推导。

    小牛第二定律就接着说了:

    那么问题来了:

    当一根绳子静止在地面的时候,它处于松弛状态,没有张力。

    这个力只可能来自绳子相邻点之间的相互作用。

    接着他看了法拉第一眼。

x,通过一定的操作f(x)就能得到一个y。

    如果想描述一个完整动态的波,就得把时间t考虑进来。

    跟我的手最近的那个点为什么不会被拉动?

    但是力的作用又是相互的,附近的点给端点施加了一个张力,那么这个附近的点也会受到一个来自端点的拉力。

    又比如我们用力拉一根绳子,我明明对绳子施加了一个力,但是这根绳子为什么不会被拉长?

    也就是说。

    答桉同样很简单:

    答桉同样很简单:

    这位电磁学大老的表情没什么波动,看来暂时还没有掉队。

    世界上到处都是随着时间、空间变化的东西。

    F=ma。

    众所周知。

    经过了时间t之后,波速为v。

    正是小牛总结出的牛二定律。

    一根绳子放在地上的时候是静止不动的,我们甩一下就会出现一个波动。

    图像某个点的纵坐标y不仅跟横轴x有关,还跟时间t有关,这样的话就得用一个二元函数y=f(x,t)来描述一个波。

    答桉自然是这个点附近的点,给这个质点施加了一个相反的张力。

    如果合外力F不为零,那么物体就会有一个加速度a,它们之间的关系就由F=ma来定量描述。

    我们的手只是拽着绳子的一端,并没有碰到绳子的中间,但是当这个波传到中间的时候绳子确实动了。

    因此徐云又写下了一个式子:

    通过上面的分析,便可以总结出一个概念:

    绳子会动就表示有力作用在它身上,那么这个力是哪里来的呢?

    既然用f(x,t)来描述波,所以波的初始形状(t=0时的形状)就可以表示为f(x,0)。

    因为单纯的y=f(x),只是描述某一个时刻的波的形状。

    “这是纯数学上的描述,但这还不够,我们还需要从物理的角度进行一些分析。”

    也就是说前一秒波是这个形状,一秒之后波虽然不在这个地方了,但是它依然是这个形状。

    那么这个波就向右边移动了vt的距离,也就是把初始形状f(x,0)往右移动了vt。

    虽然后来恶补了许多知识,但数学依旧是这位电磁大老的一个弱项。

    这个波是怎么传到远方去的呢?

    接着徐云又在旁边写了个t,也就是时间的意思。

    那么我们就可以根据小牛第二

    也就是说波形是随着时间变化的,即:

    正是这种张力让绳子上的点上下振动,所以,分析这种张力对绳子的影响就成了分析波动现象的关键。

    这个过程可以一直传播下去,最后的结果就是这根绳子所有的地方都会张力。


【1】【2】【3】【4】【5】
如果您喜欢【寂寞书屋】,请分享给身边的朋友
">